UNIT II

REPRESENTATION OF KNOWLEDGE

Syllabus: Game playing – Knowledge representation, Knowledge representation using Predicate logic, Introduction to predicate calculus, Resolution, Use of predicate calculus, Knowledge representation using other logic-Structured representation of knowledge.
GAME PLAYING

Game playing is a search problem defined by following components:

1.Initial state: This defines initial configuration of the game and identifies first payer to move.

2. Successor function: This identifies which are the possible states that can be achieved from the current state. This function returns a list of (move, state) pairs, each indicating a legal move and the resulting state.

3. Goal test: Which checks whether a given state is a goal state or not. States where the game ends are called as terminal states.

4. Path cost / utility / payoff function: Which gives a numeric value for the terminal states. In chess, the outcome is win, loss or draw, with values +1, -1, or 0. Some games have wider range of possible outcomes.
Characteristics
1. Unpredictable Opponent: Generally we cannot predict the behavior of the opponent. Thus we need to find a solution which is a strategy specifying a move for every possible opponent move or every possible state.

2. Time Constraints: Every game has a time constraints. Thus it may be infeasible to find the best move in this time.

Types of Game

1. Perfect Information Game: In which player knows all the possible moves of himself and opponent and their results. E.g. Chess.

2. Imperfect Information Game: In which player does not know all the possible moves of the opponent. E.g. Bridge since all the cards are not visible to player.

Structure of the game

· 2- person game

· Players alternate moves

· Zero-sum game: one player’s loss is the other’s gain

· Perfect information: both players have access to complete information about the state of the game. No information is hidden from either player.

· No chance (e. g. using dice) involved

 E.g. Tic- Tac- Toe, Checkers, Chess, Go, Nim, Othello

For dealing with such types of games, consider all the legal moves we can make from the current position. Compute the new position resulting from each move. Evaluate each resulting position and determine which is best for us. Make that move. Wait for our opponent to move and repeat the procedure. But for this procedure the main problem is how to evaluate the position? Evaluation function or static evaluator is used to evaluate the ‘goodness’ of a game position. The zero- sum assumption allows us to use a single evaluation function to describe the goodness of a position with respect to both players. Lets consider, f(n) is the evaluation function of the position ‘n’. Then,

– f(n) >> 0: position n is good for me and bad for you
– f(n) << 0: position n is bad for me and good for you
– f(n) near 0: position n is a neutral position

e.g. evaluation function for Tic- Tac- Toe:

f(n) = [# of 3- lengths open for me] - [# of 3- lengths open for you]
where a 3- length is a complete row, column, or diagonal

Minimax

Game Trees

Games are represented in the form of trees wherein nodes represent all the possible states of a game and edges represent moves between them. Initial state of the game is represented by root and terminal states by leaves of the tree. In a normal search problem, the optimal solution would be a sequence of moves leading to a goal state that is a win. Even a simple game like tic-tac-toe is too complex for us to draw the entire game tree.
[image: image18.jpg](i) (vi)

{x / abraham, y / mike}

(iv) ~ FATHER(abraham, z) V ~PARENT(z, mike)
{z / robert}
~PARENT (robert, mike) (i)
~ FATHER (robert, mike) (v)

Answer: Yes

Game tree for Tic-Tac-Toe

Let us represent two players by ‘X’ and ‘O’. From the initial state, X has nine possible moves. Play alternates between X and O until we reach leaves. The number on each leaf node indicates the utility value of the terminal states from the point of view of X. High values are assumed to be good for X and bad for O.

 Minimax Trees

Imagine a simple game that only has three moves, one move results in a win, another draw, and finally a loss. Therefore, we want to assess each node and figure what the outcome will be. Let us extend our game to one that allows us to make three moves per go, and only takes two goes to win. Therefore, we will want to look ahead to find out which move combination works for us. We can generate a game tree of all the possible moves.

[image: image2.png]/T\
W he

<
ANETAN

(T4 "D RV P v

 Game Tree

We can see how there are 9 final possible moves. Imagine that N11 is the winning situation; therefore our first move will have to be N4. How can we figure this out algorithmically? Let us assign values to a win, draw and loss. A win will be 1, a draw 0 and a loss -1. Say that N11 is the only winner, and the rest are drawing situations. So, what we'll want to do is evaluate the tree from the bottom-up propagating the maximum value for the nodes upwards. Therefore, for the N5-N7 group, 0 is the highest so this is applied to N2. N8-N10 also has 0 as the highest, which is taken on by N3. The N11-N13 group has 1 as the highest. The program knows to choose N4.

In our example, since the tree is only two layers deep this seems rather trivial. But imagine a tree 10 layers keep, this method would allow us to simply calculate which moves would lead to a winning situation. Most of us will already notice a large fault in this - trees this large are incredibly expensive in both memory and computational terms. A 10-layer tree that branches three times for each node would have 59,049 nodes. This is relatively simple - a Tic-tac-toe tree would have 362,880 (9!) nodes.

Therefore, we have to cut down the depth of our tree. This gives us a problem, though - if we limit the depth we are not guaranteed a winning scenario as one of the nodes. This is where the clever programming has to come in. We must create some sort of evaluation function that can assess how close to a winning situation the board is. Since the nodes are not so clear-cut (win, draw, loss) a more complicated numbering system has to be used. The system is completely dependent on the programmer and the board game in question.

Very few board games are one player, so how can we add this into our tree? When we are playing for ourselves, we are attempting to maximize our score, so our opponent will want to minimize our score. Here comes minimax into picture.

In a two-player game, the first player moves with MAX score and the second player move with MIN score. A minimax search is used to determine all possible continuations of the game up to a desired level. A score is originally assigned to the leaf known as utility value and indicated by UTILITY(n). Then by evaluating each possible set of moves, a score is assigned to the upper level by the minimax algorithm. The minimax algorithm performs a preorder traversal and computes the scores on the fly. The same would be obtained by a simple recursive algorithm. The rule is as follows:

Minimax_value(u)

{ //u is the node we want to score
 if u is a leaf return score of u;

else

if u is a min node

for all children of u: v1, .. vn ;

return min (Minimax_value(v1),..., Minimax_value(vn))

else

for all children of u: v1, .. vn ;

return max (Minimax_value(v1),..., Minimax_value(vn))

}

Let us take a look at a game tree. Here is our game tree with evaluations assigned to the final nodes:

[image: image3.png]

Minimax tree with evaluation function applied to leaves

Now, assigned values are for boards representing our opponent’s choice of boards. N1 stands for the current board, N2-N4 are our three possible moves and N5-N13 are the opponent’s possible follow-up moves. Since our opponent will try to minimize our winning possibility, therefore will calculate the minimum value for each node and assign it to the parent. N2 will equal 0, N3 will equal 3, and N4 will equal 2. In making a choice for our best possible move, we look at the max of these values - which is 3 (N3).

 Minimax Algorithm

Now let us put all this in the form of algorithm. Following is manimax algorithm, which takes current state as an input and returns a best possible operator to be applied to current state. Essentially this is same as what we have seen previously in recursive function. But this algorithm is written from the MAX player point of view.

Function MINIMAX-DECISION (state) returns an operator

For each op in OPERATORS[game] do

VALUE [op] = MINIMAX-VALUE (APPLY (op, state), game)

End

Return the op with the highest VALUE [op]

Function MINIMAX-VALUE (state, game) returns a utility value

If TERMINAL-TEST (state) then

Return UTILITY (state)

Else If MAX is to move in state then

Return the highest MINIMAX-VALUE of SUCCESSORS (state)

 Else

Return the lowest MINIMAX-VALUE of SUCCESSORS (state)

The minimax algorithm computes the minimax decision from the current state. It uses a simple recursive computation of the minimax values of each successor state, directly implementing the defining equations. The recursion proceeds all the way down to the leaves of the tree, and then the minimax values are backed up through the tree as the recursion unwinds.

Let’s see an example. In fig 4, a game with 2 plies is shown. One ply indicates one move of one player. MAX has three possible moves, which are followed by three possible moves each for MIN. Tree shows these moves. Leaf nodes are evaluated and utility values are assigned to them. These values are propagated upward to assign the utility values to the parents.

[image: image4.png]2 PLY GAME

MAX

MIN

Minimax Game Tree

Summarizing, one can view in its entire form, the score values at each of the levels of the tree at any given point during the game. By viewing this tree, a player may be able to foresee which moves are more advantageous and beneficial for them. The root of the tree represents the position of the current player, thus, depending on the number of levels that is to be searched, all odd levels represent the first player while the even levels represent the second player.

 Characteristics of minimax algorithm

1. Completeness: Minimax is complete if the tree is finite. E.g Chess has a very large but finite tree. Thus minimax is complete in case of chess.

2. Optimality: If observed carefully, algorithm is optimal against an optimal player only. In fig.4, A1 is the optimal move if the opponent is also optimal. If opponent is not optimal then MAX can get more utility by selecting A3 if in turn MIN selects A31 giving utility of 14. But if opponent is optimal, he will select move A33 giving utility of 2 to MAX that is not optimal.
3. Time Complexity: Algorithm performs a complete depth-first search exploration, time complexity is O(bm), where b is branching factor and m is depth of the tree.
4. Space Complexity: Space complexity is O(bm).

For chess, b is approximately equal to 35 and m approximately equal to 100. Thus it is infeasible to find exact solution within given time limit. Thus one standard approach is applied called as depth limit search, in which search is limited to some depth from the current node. Nodes at that depth are assumed to be leaves and their utility values are estimated. Estimation function estimates desirability of the state. This is different for each game. There are different methods of estimation for a game. This is most interesting part of game theory.

Alpha-beta pruning

The problem with the minimax search is that the number of game states it has to examine is exponential in the number of moves. Unfortunately we can’t eliminate the exponent, but we can effectively cut it in half. The trick is that it is possible to compute the correct minimax decision without looking at every node in the game tree. The particular technique we will examine is called alpha-beta pruning. When applied to the standard minimax tree, it returns the same move as minimax would, but prunes away branches that can’t possibly influence the final decision.

Alpha and Beta are the variables defined as:

At each MAX node n, alpha(n) = maximum value found so far

At each MIN node n, beta(n) = minimum value found so far

The alpha values start at -infinity and only increase, while beta values start at +infinity and only decrease. Let us see an example. Three possible moves of MIN corresponding to given move of MAX are evaluated. They have utility values of 3, 12 and 8. Thus MIN will select minimum of them i.e. 3. Thus from this move of MAX, it can get utility value of 3. Here value of alpha becomes 3. Thus it is assured that utility value of MAX can no be less than 3..

[image: image5.png]MAX

MIN

12

23

 Alpha Pruning

Now consider another move of MAX. That will lead to 3 possible moves of MIN. One of these moves has utility value of 2. Now this becomes beta value of MIN node. Now whatever may be the utility values of other two children, utility value of MIN node cannot be grater than 2. Thus this MIN can propagate upward at the max value of 2. This 2 is less than current alpha of MAX node i.e. 3. Because MAX is assured with the utility value of at least 3, it will not consider any MIN node returning utility value less than 3. And thus it prunes the search there for this MIN node. Thus without considering other 2 children of MIN node we can proceed further. This is called as alpha pruning i.e. pruning based on alpha value and applied at the MIN node. Beta pruning is same as alpha pruning with the difference that it is applied at MAX node
[image: image6.png]MAX

MIN

X

23

<2

X

 Alpha Pruning

Thus, we can define the procedure for alpha cutoff and beta cutoff as follows:

· Beta cutoff: Cut off the search below MAX node n (i.e., don’t generate or examine any more of n’s children) if alpha(n) >= beta(i) for some MIN node ancestor i of n.

· Alpha cutoff: Stop searching below MIN node n if beta(n) <=alpha(i) for some MAX node ancestor i of n.

(- (pruning reduces the search space without affecting final result. Order in which successors are scanned affects performance. With a good ordering we can improve the performance but in the worst case it may result in no improvement in performance. Time complexity with best case comes to be O(bm/2). Thus with the same time constraints, we can double the depth of search.

This method of alpha beta pruning can be applied in the games with chance. E.g chance card game where chance introduced by card shuffling, or games involving dice rolling.

Applications

Game theory has vast applications in different fields. Some of the important are mentioned below.

a. Entertainment: Game theory is used to define different strategies of different games.

b. Economics: Each factor in the market, such as seasonal preferences, buyer choice, changes in supply and material costs, and other such market factors can be used to describe strategies to maximize the outcome and thus the profit.

c. Military: Game theory can be useful in Military also. Military strategists have turned to game theory to play "war games". Usually, such games are not zero-sum games, for loses to one side are not won by the other.

d. Political science: The properties of n-person non-zero-sum games can be used to study different aspects of political science and social science. Matters such as distribution of power, interactions between nations, the distribution of classes and their effects of government, and many other matters can be easily investigated by breaking the problem down into smaller games, each of whose outcomes affect the final result of a larger game.
KNOWLEDGE REPRESENTATION
[image: image7.png]KNOWLEDGE

INFORMATION DATA

Knowledge:
Knowledge representation is to express knowledge in a computer

tractable(Easy to control or Easy to deal) form, so it can be used to enable our AI agents to perform well.
Artificial Intelligence deal with knowledge (i.e) data as follows
· Facts (believe & observe knowledge)

· Procedures (how to knowledge)

· Meaning (relate & define knowledge)
Requirements Of A Knowledge Representation:
1.Representational Adequacy – Ability to represent all the different kinds of

knowledge that related to the domain.

2. Inferential Adequacy – Ability to derive new structures (corresponding to new knowledge) from existing structures.

3. Inferential Efficiency – Ability to incorporate additional information into the

knowledge structure.

5. Acquisitional Efficiency – Ability to acquire new information easily.
Components Of A Good Representation:

1.The lexical part – Determines which symbols or words should be used in vocabulary.

2. The structural or syntactic part – Describes the constraints how the symbols can be arranged, i.e. a grammar.

3. The semantic part – Establishes a way of associating real world meanings with the representations.

4. The procedural part – Generate the procedures in a ways of creating and modifying representations.

Definition: Logic

A language with concrete rules. It has no ambiguity in representation (may be other errors!).It allows unambiguous communication and processing. It is very unlike natural languages e.g. English. It has many ways to translate between languages
· A statement can be represented in different logics and perhaps differently in same logic
Syntax
· Rules for constructing legal sentences in the logic
· Which symbols we can use (English: letters, punctuation)
· How we are allowed to combine symbols
Semantics
· How we interpret (read) sentences in the logic
· Assigns a meaning to each sentence
Example: “All lecturers are seven foot tall”
· A valid sentence (syntax)
· And we can understand the meaning (semantics)
· This sentence happens to be false (there is a counterexample)
Syntax
· Propositions, e.g. “it is wet”
· Connectives: and, or, not, implies, iff (equivalent)
· Brackets, T (true) and F (false)
Semantics (Classical AKA Boolean)
· Define how connectives affect truth
· “P and Q” is true if and only if P is true and Q is true
· Use truth tables to work out the truth of statements
Representation and Logic

· AI wanted “non-logical representations”
· Production rules
· Semantic networks
· Conceptual graphs, frames
· But all can be expressed in first order logic!
· Best of both worlds
· Logical reading ensures representation well-defined
· Representations specialised for applications
· Can make reasoning easier, more intuitive
Knowledge Representation using Logic:
· First order logic
· High Order Logic
· Predicate logic
FIRST ORDER LOGIC
More expressive logic than propositional
· Constants are objects: john, apples
· Predicates are properties and relations:
· likes(john, apples)
· Functions transform objects:
· likes(john, fruit_of(apple_tree))
· Variables represent any object: likes(X, apples)
· Quantifiers qualify values of variables
· True for all objects (Universal): (X. likes(X, apples)
· Exists at least one object (Existential):(X. likes(X, apples)
Example:

“Every rose has a thorn”
[image: image8.png]VX.(rose(X) — 3Y.(has(X,Y) Athorn(Y)))

Explanation:

For all X if (X is a rose) then there exists Y (X has Y) and (Y is a thorn)
Example:

“On Mondays and Wednesdays I go to John’s house for dinner”
[image: image9.png]VX ((iscmon(X) Viscwed(X)) —
eat_meal(me, houseO f(john), X))

Explanation: Note the change from “and” to “or”
· Translating is problematic
High Order Logic

It is more expressive than first order, Functions and predicates are also objects
· Described by predicates: binary(addition)
· Transformed by functions: differentiate(square)
· Can quantify over both
Example: Define red functions as having zero at 17
[image: image10.png]VF.(red(F) < F(0) = 17)

Beyond True and False
· Multi-valued logics
· More than two truth values
· e.g., true, false & unknown
· Fuzzy logic uses probabilities, truth value in [0,1]
· Modal logics
· Modal operators define mode for propositions
· Epistemic logics (belief)
· e.g. (p (necessarily p), (p (possibly p), …
· Temporal logics (time)
· e.g. (p (always p), (p (eventually p), …
Advantages:
1. Fairly easy to do the translation when possible
2. Branches of mathematics devoted to it
3. It enables us to do logical reasoning
a. Tools and techniques come for free
4. Basis for programming languages
a. Prolog uses logic programs (a subset of FOL)
b. (Prolog based on HOL
PREDICATE LOGIC

It has three more logical notions as compared to PL.

· Terms, Predicates and

· Quantifiers

Term-A constant (single individual or concept i.e.,5, john etc.), A variable that stands for different individuals. It hasn-place function f(t1, …, tn) where t1, …, tn are terms. A function is a mapping that maps n terms to a term.

Predicate-a relation that maps n terms to a truth value true (T) or false (F).
Quantifiers-Universal or existential quantifiers i.e. (and (used in conjunction with variables.
Example:

· “john’s father loves john” is represented as LOVE(father(john), john).

· Here father is a function that maps john to his father.

· x is greater than y is represented in predicate calculus as GT(x, y). It is defined as follows:

GT(x, y)
=
T , if x (y

=
F , otherwise

· Symbols like GT and LOVE are called predicates

· Predicates two terms and map to T or F depending upon the values of their terms.
Example:

· Translate the sentence "Every man is mortal” into Predicate formula.

· Representation of statement in predicate form

· “x is a man” and “MAN(x),

· x is mortal” by MORTAL(x)

· Every man is mortal :

((x) (MAN(x) (MORTAL(x))

First Order Predicate Logic:

It can be defined as the combination of Inference rules are and Predicate Calculus. In First Order Predicate Logic (FOPL), quantification is over variables. Higher order Predicate Logic is one if quantification is on functions or predicates. Using inference rules one can derive new formula using the existing ones. Interpretations of Formulae in FOPL
· In PL, an interpretation is simply an assignment of truth values to the atoms.

· In FOPL, there are variables, so we have to do more than that.

· An interpretation I for a formula (in FOPL consists of a non empty domain D and an assignment of values to each constant, function symbol and predicate symbol.

A formula (is said to be consistent (satisfiable) if and only if there exists an interpretation I such that I[(] = T.

Alternatively we say that I is a model of (or I satisfies (.

A formula (is said to be inconsistent (unsatisfiable) if and only if (no interpretation that satisfies (or there exists no model for (.

A formula (is valid if and only if for every interpretation I, I[(] = T.

A formula (is a logical consequence of a set of formulae {(1, (2, ..., (n } if and only if

for every interpretation I, if I[(1 (… ((n] = T, then I[(] = T.

Prenex Normal form:

1. In FOPL, there are infinite number of domains and consequently infinite number of interpretations of a formula.

2. Therefore, unlike PL, it is not possible to verify a validity and inconsistency of a formula by evaluating it under all possible interpretations.

3. We will discuss the formalism for verifying inconsistency and validity in FOPL.

4. In FOPL, there is also a third type of normal form called Prenex Normal Form.

5. A closed formula (of FOL is said to be in Prenex Normal Form (PNF) if and only if (is represented as

(q1 x1) (q2 x2) … (qn xn) (M),

where, qk , (1 (k (n) quant ((or () and

M is a formula free from quantifiers.
6. A list of quantifiers [(q1 x1) … (qn xn)] is called prefix and M is called the matrix of a formula (. Here M is represented in CNF.

Transformation of Formula into PNF

A formula can be easily transformed into PNF using various equivalence laws. Following conventions are used:

· ([x] (a formula (, which contains a variable x.

· ((
a formula without a variable x.

· q (
Quantifier ((or ().

 Equivalence Laws

In addition to the equivalence laws given for PL, following equivalence laws FOPL available.

· (q x) ([x] V (

(
(q x) (([x] V ()

· (V (q x) ([x]
(
 (q x) ((V ([x])

· (q x) ([x] ((
(
(q x) (([x] (()

· (((q x) ([x]
(
(q x) (((([x])

· ~(((x) ([x])

(
((x) (~([x])

· ~(((x) ([x])

(
((x) (~([x])

Skolemisation or Standard Form

Prenex normal form of a formula is further transformed into special form called Skolemisation or Standard Form. This form is used in resolution of clauses. The process of eliminating existential quantifiers and replacing the corresponding variable by a constant or a function is called skolemisation. A constant or a function is called skolem constant or function.
Conversion of PNF to its Standard Form
· Scan prefix from left to right.

· If q1 is the first existential quantifier then

· choose a new constant c (D & (Matrix. Replace all occurrence of x1 appearing in Matrix by c and delete (q1 x1) from the prefix to obtain new prefix and matrix.

· If qr is an existential quantifier and q1….qr-1 are universal quantifiers appearing before qr , then

· choose a new (r-1) place function symbol 'f ' (D & (Matrix. Replace all occurrence of xr in Matrix by f(x1, …, xr-1) and remove (qr xr).

· Repeat the process till all existential quantifiers are removed from matrix.

· Any formula (in FOPL can be transformed into its standard form.

· Matrix of standard formula is in CNF and prefix is free from existential quantifiers.

· Formula in standard form is expressed as:

((x1)… ((xn) (C1 (… (Ck),

where Ck ,(1(k (m) is formula in disjunctive normal form.

· Since all the variables in prefix are universally quantified, we omit prefix part from the standard form for the sake of convenience and write standard form as (C1 (… (Ck).

· The standard form of any formula is of the form (C1 (… (Ck), where each Ci , (1 (i (m) is a clause.

· A clause Ci is a closed formula of the form (L1V … V Lm), where each Li is a literal with all the variables occurring in L1, …, Lm being universally quantified.

· Let S = { C1, … ,Ck } be a set of clauses that represents a standard form of a formula (.

· S is said to be unsatisfiable (inconsistent) if and only if there (no interpretation that satisfies all the clauses of S simultaneously.

· A formula (is unsatisfiable (inconsistent) if and only if its corresponding set S is unsatisfiable.

· S is said to be satisfiable (consistent) if and only if each clause is consistent i.e., (an interpretation that satisfies all the clauses of S simultaneously.

· Alternatively, an interpretation I models S if and only if I models each clause of S.
Resolution:

Resolution method is used to test unsatisfiability of a set S of clauses in Predicate Logic. It is an extension of resolution method for PL. The resolution principle basically checks whether empty clause is contained or derived from S. Resolution for the clauses containing no variables is very simple and is similar to PL. It becomes complicated when clauses contain variables. In such case, two complementary literals are resolved after proper substitutions so that both the literals have same arguments.
Example:

· Consider two clauses C1 and C2 as follows:

C1
=
P(x) V Q(x)

C2
=
~ P(f(x)) V R(x)

· Substitute 'f(a)' for 'x' in C1 and 'a' for 'x' in C2 , where 'a' is a new constant from the domain, then

C3
=
 P(f(a)) V Q(f(a))

C4
=
 ~ P(f(a)) V R(a)

· Resolvent C of C3 and C4 is [Q(f(a)) V R(a)]
· Here C3 and C4 do not have variables. They are called ground instances of C1 and C2 .

· In general, if we substitute 'f(x)' for 'x' in C1 , then

C'1
=
 P(f(x)) V Q(f(x))

· Resolvent C' of C'1 and C2 is [Q(f(x)) V R(x)]

· We notice that C is an instance of C' .

Theorems:

· Logical Consequence: L is a logical consequence of S iff {S(~L} = { C1,,… , Cn , ~ L} is unsatisfiable.

· A deduction of an empty clause from a set S of clauses is called a resolution refutation of S.
Soundness and completeness of resolution: There is a resolution refutation of S if and only if S is unsatisfiable (inconsistent).

· L is a logical consequence of S if and only if there is a resolution refutation of S ({~L}.

· We can summarize that in order to show L to be a logical consequence the of set of formulae {(1,…,(n }, use the procedure given on next slide.
Procedures:
Obtain a set S of all the clauses.Show that a set S ({ ~ L} is unsatisfiable i.e.,

· the set S ({ ~ L} contains either empty clause or empty clause can be derived in finite steps using resolution method.

· If so, then report 'Yes' and conclude that L is a logical consequence of S and subsequently of formulae (1, …, (n otherwise report 'No'.

Resolution refutation algorithm finds a contradiction if one exists, if clauses to resolve at each step are chosen systematically. There exist various strategies for making the right choice that can speed up the process considerably.
Note:
1. Initially choose a clause from the negated goal clauses as one of the parents to be resolved.

2. This corresponds to intuition that the contradiction we are looking for must be because of the formula to be proved .

3. Choose a resolvent and some existing clause if both contain complementary literals.

4. If such clauses do not exists, then resolve any pairs of clauses that contain complementary literals.

5. Whenever possible, resolve with the clauses with single literal.

6. Such resolution generate new clauses with fewer literals than the larger of their parent clauses and thus probably algorithm terminates faster.

7. Eliminate tautologies and clauses that are subsumed by other clauses as soon as they are generated.

8. Logic Programming

9. Logic programming is based on FOPL.

10. Clause in logic programming is special form of FOPL formula.

11. Program in logic programming is a collection of clauses.

12. Queries are solved using resolution principle.

13. A clause in logic programming is represented in a clausal notation as

14. A1, …, Ak (B1,…, Bt ,

15. where Aj are positive literals and Bk are
negative literals.

 Conversion of clause into a clausal notations

A clause in FOPL is a closed formula of the form,

L1V … V Lm

where each Lk , (1 (k (n) is a literal and all the variables occurring in L1, …, Lm are universally quantified.Separate positive and negative literals in the clause as follows:
(L1V … V Lm) (
(A1 V … VAk V ~ B1 V …V~ Bt),
where m = k + t, Aj, (1 (j (k) are positive literals and Bj ,
 (1 (j (t) are negative literals

(L1V … V Lm)
((A1 V … VAk V ~ B1 V …V~ Bt),

((A1 V … VAk) V ~ (B1 (… (Bt)

((B1 (… (Bt) ((A1 V … VAk)

{since P (Q (~ P V Q}

· Clausal notation is written in the form :

(A1V … VAk) ((B1 (… (Bt) OR
 A1, …, Ak (B1,…, Bt Here Aj , (1 (j (k) are positive literals and Bi , (1 (i (t) are negative literals.

· Interpretations of A (B and B (A are same.In clausal notation, all variables are assumed to be universally quantified.

· Bi , (1 (i (t) (negative literals) are called antecedents and Aj , (1 (j (k) (positive literals) are called consequents.

· Commas in antecedent and consequent denote conjunction and disjunction respectively.

· Applying the results of FOPL to the logic programs, a goal G with respect to a program P (finite set of clauses) is solved by showing that the set of clauses P ({ ~ G} is unsatisfiable or there is a resolution refutation of P ({ ~ G}.

· If so, then G is logical consequence of a program P. There are three basic statements. These are special forms of clauses.

· facts,

· rules and queries.
Example:

· Consider the following logic program.

GRANDFATHER (x, y) (FATHER (x, z) , PARENT (z, y)

PARENT (x, y) (
FATHER (x, y)

PARENT (x, y) (
MOTHER (x, y)

FATHER (abraham, robert) (

FATHER (robert, mike) (

· In FOL above program is represented as a set of clauses as:

S = {GRANDFATHER (x, y) V ~FATHER (x, z) V ~ PARENT (z, y),
PARENT(x, y) V ~ FATHER (x, y),

PARENT(x, y) V ~ MOTHER (x, y),

FATHER (abraham, robert),

FATHER (robert, mike) }
Example:
Let us number the clauses of S as follows:

i. GRANDFATHER(x, y) V ~FATHER(x, z) V ~PARENT(z, y)

ii.
PARENT(x, y) V ~ FATHER (x, y)
iii.
PARENT(x, y) V ~ MOTHER (x, y),
iv.
FATHER (abraham, robert)
v.
FATHER (robert, mike)
Simple queries :
· Ground Query

Query:“Is abraham a grandfather of mike ?"

· Ground Query “Is abraham a grandfather of mike ?"

(GRANDFATHER (abraham, mike).
· In FOPL, ~GRANDFATHER(abraham, mike) is negation of goal { GRANDFATHER (abraham, mike).

· Include {~goal} in the set S and show using resolution refutation that S ({~ goal} is unsatisfiable in order to conclude the goal.

· Let ~ goal is numbered as (vi) in continuation of first five clauses of S listed above.

vi.
~ GRANDFATHER (abraham, mike)

· Resolution tree is given on next slide:

[image: image11]
NON LOGICAL REPRESENTATION OR STRUCTURAL REPRESENTATION
· Production rules
· Semantic networks
· Conceptual graphs
· Frames
Production Rules

Rule set of <condition,action> pairs “if condition then action”.A rule can write knowledge to working memory, knowledge may match and fire other rules
Match-resolve-act cycle
· Match: Agent checks if each rule’s condition holds
· Resolve:
· Multiple production rules may fire at once (conflict set)
· Agent must choose rule from set (conflict resolution)
· Act: If so, rule “fires” and the action is carried out
Example

1. IF (at bus stop AND bus arrives) THEN action(get on the bus)
2. IF (on bus AND not paid AND have oyster card) THEN action(pay with oyster) AND add(paid)
3. IF (on bus AND paid AND empty seat) THEN sit down
4. conditions and actions must be clearly defined
5. can easily be expressed in first order logic!
Conceptual Graphs:
Humans draw diagrams all the time, e.g. Causal relationships and relationships between ideas
[image: image12.png]

[image: image13.png]

Example:

· Graphs easy to store in a computer
· To be of any use must impose a formalism
[image: image14.png]

· Jason is 15, Bryan is 40, Arthur is 70, Jim is 74
· How old is Julia?
Semantic Networks
[image: image15.png]

But the syntax is the same we can guess that Julia’s age is similar to Bryan’s. Formalism imposes restricted syntax .Graphical representation (a graph)
· Links indicate subset, member, relation, It is equivalent to logical statements (usually FOL),Easier to understand than FOL. Specialised SN reasoning algorithms can be faster
Example: Natural language understanding
· Sentences with same meaning have same graphs
· e.g. Conceptual Dependency Theory (Schank)
Difference between Graphs and Semantics

Semantic network where each graph represents a single proposition .Concept nodes can be concrete (visualisable) such as restaurant, my dog Spot.Abstract (not easily visualisable) such as anger. Edges do not have labels, instead, conceptual relation nodes, Easy to represent relations between multiple objects
[image: image16.png]

Frames:

· Semantic networks where nodes have structure, Frame with a number of slots (age, height, ...).Each slot stores specific item of information
· When agent faces a new situation Slots can be filled in (value may be another frame).Filling in may trigger actions. May trigger retrieval of other frames
· Inheritance of properties between frames. Its very similar to objects in OOP
Example:

[image: image17.png]

Flexibility in Frames

Slots in a frame can contain information for choosing a frame in a situation, Relationships between this and other frames,Procedures to carry out after various slots filled, Default information to use where input is missing, Blank slots: left blank unless required for a task, Other frames, which gives a hierarchy, It can also be expressed in first order logic
[image: image1.png][0

X[o]o]

X[o[X]
olo[x
X[X[0]

[0

[0

“

