Velammal College of Engineering and Technology, Madurai
Department of Information Technology

2016-2017 Even Semester

Course Code-Title	: CS6659 ARTIFICIAL INTELLIGENCE Degree/Year/Semester: B.TECH-IT/III/VI
[bookmark: _GoBack]Name of the Instructor: Ms.S.Nirmala
UNIT IV
PLANNING AND MACHINE LEARNING	
Basic plan generation systems - Strips -Advanced plan generation systems – K strips -Strategic explanations -Why, Why not and how explanations. Learning- Machine learning, adaptive Learning.

Basic plan generation systems & STRIPS

· Components of a Planning System
· Example: Block World Problem
· STRIPS Mechanism
· Simple planning using a Goal Stack
· Sussman anomaly problem

Planning
· Planning refers to the process of computing several steps of a problem solving before executing any of them.
· Planning is useful as a problem solving technique for non decomposable problem.

Components of a Planning System
· Choose the best rule (based on heuristics) to be applied
· Apply the chosen rule to get new problem state
· Detect when a solution has been found
· Detect dead ends so that new directions are explored.

· Choose Rules to apply
Most widely used technique for selecting appropriate rules is to
· First isolate a set of differences between the desired goal state and current state,
· Identify those rules that are relevant to reducing these difference,
· If more rules are found then apply heuristic information to choose out of them.
· Apply Rules
In simple problem solving system,
· Applying rules was easy as each rule specifies the problem state that would result from its application.
· In complex problem we deal with rules that specify only a small part of the complete problem state.

Example:Block World Problem
· Block world problemassumptions
· Square blocks of same size
· Blocks can be stacked one upon another.
· Flat surface (table) on which blocks can be placed.
· Robot arm that can manipulate the blocks. It can hold only one block at a time.
· In block world problem, the state is described by a set of predicates representing the facts that were true in that state.
· One must describe for every action, each of the changes it makes to the state description.
· In addition, some statements that everything else remains unchanged is also necessary.
Actions (Operations) done by Robot
· UNSTACK (X, Y) :	[US (X, Y)]
· Pick up X from its current position on block Y. The arm must be empty and X has no block on top of it.
· STACK (X, Y): 		[S (X, Y)]
· Place block X on block Y. Arm must holding X and the top of Y is clear.
· PICKUP (X):		[PU (X)]
· Pick up X from the table and hold it. Initially the arm must be empty and top of X is clear.
· PUTDOWN (X):		[PD (X)]
· Put block X down on the table. The arm must have been holding block X.
Predicates used to describe the state
· ON(X, Y)	-	Block X on block Y.
· ONT(X)		-	Block X on the table.
· CL(X)		-	Top of X clear.
· HOLD(X)	-	Robot-Arm holding X.
· AE		-	Robot-arm empty. 	
Logical statements true in this block world
· Holding X means, arm is not empty	
		(X) HOLD (X) ~ AE
· X is on a table means that X is not on the top of any block
		(X) ONT (X) ~ (Y) ON (X, Y)
· Any block with no block on has clear top
		(X) (~ (Y) ON (Y,X)) CL (X)
Effect of Unstack operation
· The effect of US(X, Y) is described by the following axiom
 [CL(X, State) ON(X, Y, State)]
			[HOLD(X, DO(US (X, Y), State)) 					CL(Y,DO(US(X, Y), State))]
· DO is a function that generates a new state as a result of given action and a state.
· For each operator, set of rules (called frame axioms) are defined where the components of the state are
· affected by an operator
· If US(A, B) is executed in state S0, then we can infer that HOLD (A, S1) CLEAR (B, S1) holds true, where S1 is new state after Unstack operation is executed.
· not affected by an operator
· If US(A, B) is executed in state S0, B in S1 is still on the table but we can’t derive it. So frame rule stating this fact is defined as ONT(Z, S) ONT(Z, DO(US (A, B), S))
· Advantage of this approach is that
· Simple mechanism of resolution can perform all the operations that are required on the state descriptions.
· Disadvantage is that
· Number of axioms becomes very large for complex problem such as COLOR of block also does not change.
· So we have to specify rule for each attribute.
		COLOR(X, red, S)
			COLOR(X, red, DO(US(Y, Z), s))
· To handle complex problem domain, there is a need of mechanism that does not require large number of explicit frame axioms.
STRIPS MECHANISM
· One such mechanism was used in early robot problem solving system named STRIPS
· In this approach, each operation is described by three lists.
· Pre_Cond list contains predicates which have to be true before operation.
· ADD list contains those predicates which will be true after operation
· DELETE list contain those predicates which are no longer true after operation
· Predicates not included on either of these lists are assumed to be unaffected by the operation.
· Frame axioms are specified implicitly in STRIPS which greatly reduces amount of information stored.
STRIPS – Style Operators
· S (X, Y)
· Pre:	CL (Y) HOLD (X)
· Del:	CL (Y) HOLD (X)
· Add:	AE ON (X, Y)
· US (X, Y)	
· Pre:	ON (X, Y) CL (X) AE
· Del:	ON (X, Y) AE
· Add:	HOLD (X) CL (Y)
· PU (X)
· Pre:	ONT (X) CL (X) AE
· Del:	ONT (X) AE
· Add:	HOLD (X)
· PD (X)
· Pre:	HOLD (X)
· Del:	HOLD (X)
Add:	ONT (X) AE
Simple Planning using a Goal Stack
· One of the earliest techniques is planning using goal stack.
· Problem solver uses single stack that contains
· sub goals and operators both
· sub goals are solved linearly and then finally the conjoined sub goal is solved.
· Plans generated by this method will contain
· complete sequence of operations for solving one goal followed by complete sequence of operations for the next etc.
· Problem solver also relies on
· A database that describes the current situation.
· Set of operators with precondition, add and delete lists.
Algorithm
· Let us assume that the goal to be satisfied is:
			GOAL = G1 G2 … Gn
· Sub-goals G1, G2, … Gn are stacked with compound goal G1 G2 … Gn at the bottom.
		Top		G1
				G2
				:
				Gn
		Bottom		G1 G2 … G4
· At each step of problem solving process, the top goal on the stack is pursued.
· Find an operator that satisfies sub goal G1 (makes it true) and replace G1 by the operator.
· If more than one operator satisfies the sub goal then apply some heuristic to choose one.
· In order to execute the top most operation, its preconditions are added onto the stack.
· Once preconditions of an operator are satisfied, then we are guaranteed that operator can be applied to produce a new state.
· New state is obtained by using ADD and DELETE lists of an operator to the existing database.
· Problem solver keeps track of operators applied.
· This process is continued till the goal stack is empty and problem solver returns the plan of the problem.
Goal stack method – Example
· Logical representation of Initial and Goal states:
· Initial State: ON(B, A) ONT(C) ONT(A) ONT(D) CL(B) CL(C) CL(D) AE
· Goal State: ON(C, A) ON(B, D) ONT(A) ONT(D) CL(C) CL(B) AE

· We notice that following sub-goals in goal state are also true in initial state.
		ONT(A) ONT(D) CL(C) CL(B) AE
· Represent for the sake of simplicity - TSUBG.
· Only sub-goals ON(C, A) & ON(B, D) are to be satisfied and finally make sure that TSUBG remains true.
· Either start solving first ON(C, A) or ON(B, D). Let us solve first ON(C, A).

Goal Stack:
			ON(C, A)
			ON(B, D)
			ON(C, A) ON(B, D) TSUBG

· To solve ON(C, A), operation S(C, A) could only be applied.
· So replace ON(C, A) with S(C, A) in goal stack.
Goal Stack:
			S (C, A)
			ON(B, D)
			ON(C, A) ON(B, D) TSUBG
· S(C, A) can be applied if its preconditions are true. So add its preconditions on the stack.

Goal Stack:

CL(A)
HOLD(C) 	Preconditions of STACK
CL(A) HOLD(C)
			S (C, A)		Operator
			ON(B, D)
			ON(C, A) ON(B, D) TSUBG

· To satisfy the goal HOLD(C), two operators can be used e.g., PU(C) or US(C, X), where X could be any block. Let us choose PU(C) and proceed further.
· Repeat the process. Change in states is shown below.

State_1:	
	ONT(A) ONT(C) ONT(D) HOLD(B) CL(A) CL(C) CL(D)
		SQUEUE = US (B, A)
· Next operator to be popped of is S(B, D). So
State_2:	
	ONT(A) ONT(C) ONT(D) ON(B, D) CL(A) CL(C) CL(B)AE
		SQUEUE = US (B, A), S(B, D)
State_3:	
	ONT(A) HOLD(C) ONT(D) ON(B, D) CL(A) CL(B)
		SQUEUE = US (B, A), S(B, D), PU(C)
State_4:	
	ONT(A) ON(C, A) ONT(D) ON(B, D) CL(C) CL(B) AE
		SQUEUE = US (B, A), S(B, D), PU(C), S(C, A)
Difficult Problem:
· The Goal stack method is not efficient for difficult problems such as Sussman anomaly problem.
· It fails to find good solution.
· Let us consider the Sussman anomaly problem

Initial State:ON(C, A) ONT(A) ONT(B)
Goal State: ON(A, B) ON(B, C)
· Remove CL and AE predicates for the sake of simplicity.
· To satisfy ON(A, B), following operators are applied
		US(C, A) , PD(C), PU(A) and S(A, B)

State_1: ON(B, A) ONT(C)
· To satisfy ON(B, C), following operators are applied
	US(A, B) , PD(A), PU(B) and S(B, C)
State_2: 	ON(B, C) ONT(A)

· Finally satisfy combined goal ON(A, B) ON(B, C).
· Combined goal fails as while satisfying ON(B, C), we have undone ON(A, B).
· Difference in goal and current state is ON(A, B).
· Operations required are PU(A) and S(A, B)

· The complete plan for solution is as follows:
		1.	US(C, A)
		2.	PD (C)
		3.	PU(A)
		4.	S(A, B)
		5.	US(A, B)
		6.	PD(A)
		7.	PU(B)
		8.	S(B, C)
		9.	PU(A)
		10.	S(A, B)
· Although this plan will achieve the desired goal, but it is not efficient.
· In order to get efficient plan, either repair this plan or use some other method.
· Repairing is done by looking at places where operations are done and undone immediately, such as S(A, B) and US(A, B).
· By removing them, we get
		1.	US(C, A)
		2.	PD (C)
		3.	PU(B)
		4.	S(B, C)
		5.	PU(A)
		6.	S(A, B)

Microsoft_Word_97_-_2003_Document33.doc

B

C

A

C

A

B

image4.emf

C

A B

A

B C

Microsoft_Word_97_-_2003_Document44.doc

C

A

B

A

B

C

image5.emf
 Goal State

A

B C

A B C

Microsoft_Word_97_-_2003_Document55.doc

Goal State

A

B

C

A

B

C

image1.emf
 Initial State Goal State

B A

C O D

C A B D

Microsoft_Word_97_-_2003_Document11.doc

Initial State

Goal State

B

A

C ON(C, A) (ONT(A) ((ONT(B) (CL(B) (CL(C) (AE

C

A

D

B

D

image2.emf
 Initial State (State0) Goal State

C A

B

A B C

Microsoft_Word_97_-_2003_Document22.doc

Initial State (State0)

Goal State

C

A

B

A

B

C

image3.emf

C A

B C

A B

